P P SAVANI UNIVERSITY

Fifth Semester of B. Tech. Examination November 2022

SECV3022 Indeterminate Structural Analysis

25.11.2022, Friday

Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

Q-1 Calculate end moments and plot the bending moment diagram.

[04] CO BTL 3 4

Q-2Determine the moments and reactions at the support. Using Moment distribution [10] method.

Or

Q-2 Calculate the reaction and sketch the deflected shape of the frame.

[10]

Determine influence line ordinates at 2 m interval for moment at mid span of BC for Q-3 the given beam.

Q-4 A beam ABCD 16m long is continuous over three span: AB=6m, BC=5m, CD=5m the support being at the same level. There is UDL of 20kN/mover BC. On AB, is a point

load of 80kN at 2m from A and CD, there is a point load of 60kN at 3m from D. Calculate the moments and reactions at the supports. (Use Three moment method) OR

Solve the given example using three moment method. Q-4

[05]

SECTION - II

- Q-1 Differentiate between Flexibility Method and Stiffness method [04] 2 Q-2(a) A two-span continuous beam ABC of constant flexural rigidity EI has hinge support at [06] A and rollers at B and C. The beam carries distributed load of 30 kN/m over entire length. AB=2m, BC=3m. Analyze the beam using stiffness method.
- Fig. 8 shows a rigid jointed plane frame. Considering Sway as prevented and axial deformations are to be neglected. How formation of total joint load vector can be developed?

OR A fixed beam ABC is fixed at A & C. Flexural rigidities of AB and BC parts are EI and Q-2(a) 2EI respectively. Beam carries distributed load of 60 kN/m over entire length. AB=BC=3m. Analyze the beam using flexibility method.

Q-2(b) A portal frame ABCD has columns AB and CD of height 3 m and beam BC of span 3 m. The column ends at A & D are hinged. Beam carries a load of 12 kN at 2 m from B. Calculate support reactions at D using flexibility method.

Fig. 9 shows a plane truss with three members. All members are of length 1000 mm Q-3(a) and sectional area 600 mm². Young's modulus is 150 kN/mm². Analyze using stiffness method.

Q-3(b)Analyze the frame shown in Fig. 10 using cantilever method. Draw SFD, BMD & AFD.

Q-3(a) A pin jointed plane truss shown in fig. 11 is subjected to a horizontal load of 10 kN on joint B. Sectional areas of all members are same. Calculate axial forces in members using flexibility method.

Q-3(b) Analyze the frame shown in Fig. 10 using portal method. Draw SFD, BMD & AFD.

4

[06]

[07]

[06] 4

[07] 5

Fig 9

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	mm - 3